甲自A向B先走了5.5分钟,乙自B向A行走,每分钟比甲多走30千米.他们于途中C处相遇.甲自A到C用时比自C到B用时多4分钟,乙自C向A用时比自B向C用时多3分钟,则甲从A到C用了______分钟,A、B两处的距离是______.
问题描述:
甲自A向B先走了5.5分钟,乙自B向A行走,每分钟比甲多走30千米.他们于途中C处相遇.甲自A到C用时比自C到B用时多4分钟,乙自C向A用时比自B向C用时多3分钟,则甲从A到C用了______分钟,A、B两处的距离是______.
答
设甲每分钟走x米,那么乙的速度为(x+30)米/分,设乙从B走到C花了时间t分钟
根据题意得,
,解方程组得:
=5.5x+tx x
+4t(x+30) x
= t+35.5x+tx x+30
,
x=90 t=4.5
经检验x=90,t=4.5是原方程组的解,
∴x=90,t=4.5,
所以甲从A到C花时间为5.5+4.5=10分钟,AB距离是5.5×90+4.5×90+4.5×120=1440(米).
故答案为10,1440.
答案解析:设甲每分钟走x米,那么乙的速度为(x+30)米/分,设乙从B走到C花了时间t分钟,则A到C的距离为(5.5x+tx)米,B到C的距离为t•(x+30),根据甲自A到C用时比自C到B用时多4分钟,乙自C向A用时比自B向C用时多3分钟列出方程组,并且求解得x的值,即可解题.
考试点:二元一次方程组的应用.
知识点:本题考查了二元以此方程组的应用,考查了学生找出等量关系的能力,本题中列出方程组并求x的值是解题的关键.