请问(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)等于多少?

问题描述:

请问(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)等于多少?

(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)
=(n-1)(n+1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)/(n-1)
=(n^2-1)(n^2+1)(n^3+1)(n^4+1)(n^5+1)/(n-1)
=(n^4-1)(n^4+1)(n^3+1)(n^5+1)/(n-1)
=(n^8-1)*(n^8+n^5+n^3+1)/(n-1)
你这个数字给的貌似不是太好,如果是1,2,4,8那样的将会简单得多……