如图等腰梯形ABCD的面积为100平方厘米,AB//CD,AD=BC,且AC垂直BD,求梯形的高

问题描述:

如图等腰梯形ABCD的面积为100平方厘米,AB//CD,AD=BC,且AC垂直BD,求梯形的高

设梯形的高为h厘米,则梯形的面积=(上底+下底)h/2
因为梯形ABCD为等腰梯形,且AC⊥BD 因此,∠ACD=∠BDC=45℃
分别过A、B两点做AE⊥BC,BF⊥BC,垂足分别为E、F。
在直角△AEC和直角△BFD中,因为∠ACD=∠BDC=45℃,所以直角△AEC和直角△BFD均为等腰直角三角形。所以CE=DF=h
又因为等腰梯形ABCD的下底=CE+DF-EF,且上底AB=EF
所以上底+下底=EF+(h+h-EF)=2h
因此,梯形的面积=2h*h/2=h^2=100 则,计算可得:h=10厘米
故,梯形的高为10厘米。

10

AB//CD,AD=BC 等腰梯形ABCD且AC垂直BD
可以的得到,这个梯形的面积可以转化成一个等腰直角三角形的面积(过梯形上的一个顶点,作一条对角线的平行线),这等腰直角三角形的底边为原来梯形上下底的和,高为梯形的高
于是这条高为三角形底边的一半
解设高为x厘米
2x²÷2=100
x²=100
x=10
或者
100×2÷2=100平方厘米
10×10=100
则高为10厘米

设梯形的高为h厘米,则梯形的面积=(上底+下底)h/2
因为梯形ABCD为等腰梯形,且AC⊥BD 因此,∠ACD=∠BDC=45℃
分别过A、B两点做AE⊥BC,BF⊥BC,垂足分别为E、F。
在直角△AEC和直角△BFD中,因为∠ACD=∠BDC=45℃,所以直角△AEC和直角△BFD均为等腰直角三角形。所以CE=DF=h
又因为等腰梯形ABCD的下底=CE+DF-EF,且上底AB=EF
所以上底+下底=EF+(h+h-EF)=2h
因此,梯形的面积=2h*h/2=h^2=100 则,计算可得:h=10厘米
故,梯形的高为10厘