设等差数列{an},已知a5=-3,S10=-40(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{abn}为等比数列,且b1=5,b2=8,求数列{bn}的前n项和Tn.

问题描述:

设等差数列{an},已知a5=-3,S10=-40
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{abn}为等比数列,且b1=5,b2=8,求数列{bn}的前n项和Tn

(Ⅰ)设等差数列{an}的首项为a1、公差为d,
∵a5=-3,S10=-40,

a1+4d=-3
10a1+
10×9
2
d=-40

解得:a1=5,d=-2.
∴an=7-2n.
(Ⅱ)由(Ⅰ)知,an=7-2n,又数列{abn}为等比数列,且b1=5,b2=8,
∴q=
ab2
ab1
=
a8
a5
=
7-2×8
7-2×5
=3,
ab1=a5=7-2×5=-3,
abn=(-3)×3n-1=-3n,又abn=7-2bn
∴7-2bn=-3n
∴bn=
7
2
+
3n
2

∴数列{bn}的前n项和
Tn=b1+b2+…+bn=
7n
2
+
1
2
(3+32+…+3n
=
7n
2
+
1
2
3(1-3n)
1-3
=
7n
2
+
3n+1-3
4

答案解析:(Ⅰ)设等差数列{an}的首项为a1、公差为d,依题意a5=-3,S10=-40,可求得a1=5,d=-2,于是可得数列{an}的通项公式;
(Ⅱ)由题意可求得等比数列{abn}的通项公式abn=(-3)×3n-1=-3n,又abn=7-2bn,于是可得bn=
7
2
+
3n
2
,再分组求和即可.
考试点:数列的求和;等差数列的性质.
知识点:本题考查等差数列与等比数列的通项公式的确定,考查等价转化思想与综合应用能力,(Ⅱ)中求得bn=
7
2
+
3n
2
是关键,属于难题.