设等差数列{an},已知a5=-3,S10=-40(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{abn}为等比数列,且b1=5,b2=8,求数列{bn}的前n项和Tn.
问题描述:
设等差数列{an},已知a5=-3,S10=-40
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{abn}为等比数列,且b1=5,b2=8,求数列{bn}的前n项和Tn.
答
(Ⅰ)设等差数列{an}的首项为a1、公差为d,
∵a5=-3,S10=-40,
∴
a1+4d=-3 10a1+
d=-4010×9 2
解得:a1=5,d=-2.
∴an=7-2n.
(Ⅱ)由(Ⅰ)知,an=7-2n,又数列{abn}为等比数列,且b1=5,b2=8,
∴q=
=ab2 ab1
=a8 a5
=3,7-2×8 7-2×5
又ab1=a5=7-2×5=-3,
∴abn=(-3)×3n-1=-3n,又abn=7-2bn,
∴7-2bn=-3n,
∴bn=
+7 2
,3n 2
∴数列{bn}的前n项和
Tn=b1+b2+…+bn=
+7n 2
(3+32+…+3n)1 2
=
+7n 2
•1 2
=3(1-3n) 1-3
+7n 2
.
3n+1-3 4
答案解析:(Ⅰ)设等差数列{an}的首项为a1、公差为d,依题意a5=-3,S10=-40,可求得a1=5,d=-2,于是可得数列{an}的通项公式;
(Ⅱ)由题意可求得等比数列{abn}的通项公式abn=(-3)×3n-1=-3n,又abn=7-2bn,于是可得bn=
+7 2
,再分组求和即可.3n 2
考试点:数列的求和;等差数列的性质.
知识点:本题考查等差数列与等比数列的通项公式的确定,考查等价转化思想与综合应用能力,(Ⅱ)中求得bn=
+7 2
是关键,属于难题.3n 2