一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回. (Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率; (Ⅱ)如果摸出
问题描述:
一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.
答
(Ⅰ)由题意知,本题是一个古典概型,
试验发生包含的事件是从袋中依次摸出2个球共有A92种结果,
满足条件的事件是第一次摸出黑球、第二次摸出白球有A31A41种结果,
∴所求概率P1=
=
A
13
A
14
A
29
(或P1=1 6
×3 9
=4 8
)1 6
(Ⅱ)摸球不超过三次,包括第一次摸到红球,
第二次摸到红球,第三次摸到红球,
这三个事件是互斥的
第一次摸出红球的概率为
,
A
12
A
19
第二次摸出红球的概率为
,
A
17
A
12
A
29
第三次摸出红球的概率为
,
A
27
A
12
A
39
则摸球次数不超过3次的概率为P2=
+
A
12
A
19
+
A
17
A
12
A
29
=
A
27
A
12
A
39
.7 12