(2x^2)dy/dx+y=4y^3
问题描述:
(2x^2)dy/dx+y=4y^3
将原方程化为 (1/2x^2)dx=(1/4y^3-y)dy
两边积分得 -1/6x^3+c=(1/12y^2-1)ln(4y^3-y)
答
(2x^2)dy/dx+y=4y^3,分离变量得dy/(4y^3-y)=dx/(2x^),1/(4y^3-y)=1/[y(2y+1)(2y-1)]=-1/y+1/(2y+1)+1/(2y-1),∴ln(2y+1)+ln(2y-1)-2lny=-1/x+c,∴(4y^-1)/y^=e^(-1/x+c).您做的不对.