求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)

问题描述:

求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)

1:Sn=1/1*3+1/2*4+1/3*5+.+1/n*(n+2) = 1/2*(1-1/3) + 1/2*(1/2 - 1/4) + ...+ 1/2*(1/n - 1/(n+2))= 1/2 ( 1+ 1/2 - 1/(n+1) - 1/(n+2))2:1/1*4+1/4*7+1/7*10+.+1/(3n-2)*(3n+1)=(1/3)*[3/1*4+3/4*7+3/7*10+.+3/(...