非零复数a,b满足a^2+ab+b^2=0,则(a/(a+b))^1999+(b/(a+b))^1999的值是?

问题描述:

非零复数a,b满足a^2+ab+b^2=0,则(a/(a+b))^1999+(b/(a+b))^1999的值是?

复数a,b非零,且a^2 + ab + b^2 = 0,所以,(a+b)^2 = aba/(a+b) = (a+b)/b = [b/(a+b)]^(-1) ...(1)又,a/(a+b) + b/(a+b) = 1 ...(2)令 u = a/(a+b),则由(1)和(2)解得,a/(a+b) = u = (1 + i(3)^(1/2))/2= exp[...