如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A出发,沿边AD向点D以1cm/s的速度移动,点Q从点C出发沿边CB向点B以9cm/s的速度移动,若有一点运动到端点时,另一点也随之停止.如果P、Q同时出发,能否有四边形PQCD成为等腰梯形?如果存在,求经过几秒?如果不存在,请说明理由.
问题描述:
如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A出发,沿边AD向点D以1cm/s的速度移动,点Q从点C出发沿边CB向点B以9cm/s的速度移动,若有一点运动到端点时,另一点也随之停止.如果P、Q同时出发,能否有四边形PQCD成为等腰梯形?如果存在,求经过几秒?如果不存在,请说明理由.
答
知识点:本题考查了动点问题,是难点,也是中考的重点,需熟练掌握.
设PQCD是等腰梯形时,过了t秒,
此时在梯形PQCD中,PD∥CQ,PQ=CD;
分别过P、D点作BC的垂线,分别交BC于E,F,
∵AB=14cm,AD=18cm,BC=21cm,∠B=90°,
∴PE=DF=AB=14,
∴CF=BC-AD=21-18=3,
∵经过t秒,AP=t,CQ=9t,
∴PD=18-t,QE=CQ-EF-CF=9t-(18-t)-3=10t-21;
根据勾股定理:
PQ2=PE2+QE2,
CD2=DF2+CF2,
∵PQ=CD,
∴PE2+QE2=DF2+CF2,
将数值代入得:142+(10t-21)2=142+32,
求得t=2.4或1.8,
然而当t=2.4时,Q点运动距离为9×2.4=21.6>21,不满足要求,故舍掉,
∴当t=1.8时,PD=18-1.8=16.2,QC=1.8×9=16.2,PD=QC,
∴四边形PQCD为平行四边形;
故不存在等腰梯形.
答案解析:先假设存在,画出图形,按这种情况进行分析,先求出PD=18-t,CQ=9t,过点D作DF⊥BC,CF=
,CF的长为3,从而求出t的值,再根据t的取值范围,进行判断.CQ−DP 2
考试点:等腰梯形的性质.
知识点:本题考查了动点问题,是难点,也是中考的重点,需熟练掌握.