f(x)=½x²-(a+1)x+alnx 求f(x)的单调增区间.应该怎么讨论啊.

问题描述:

f(x)=½x²-(a+1)x+alnx 求f(x)的单调增区间.应该怎么讨论啊.

∵f(x)=½x²-(a+1)x+alnx
∴f′(x)=x-(a+1)+a·1/x (x>0)
=x²-(a+1)x+a/x
令f′(x)>0
既x²-(a+1)x+a/x>0且x∈﹙0,﹢∞﹚
∴只需x²-(a+1)x+a>0
令x²-(a+1)x+a=0
解得x=1或x=a
①a≤0时
x²-(a+1)x+a>0在﹙1,+∞﹚恒成立
∴f(x)的单增区间为﹙1,+∞﹚
②00在(0,1)∪(1,+∞﹚恒成立
∴f(x)的单增区间为(0,1),(1,+∞﹚
④a>1时
x²-(a+1)x+a>0在(0,1)∪(a,+∞﹚恒成立
∴f(x)的单增区间为(0,1),(a,+∞﹚
综上 当a≤0时,f(x)的单增区间为﹙1,+∞﹚
当0