已知3*sina=2*sin(2*a+b),a+b,ak*pai+pai/2,k属于整数,求证tan(a+b)=5*tana
问题描述:
已知3*sina=2*sin(2*a+b),a+b,ak*pai+pai/2,k属于整数,求证tan(a+b)=5*tana
最好10点前解决
答
注意拆分就可以了
3sin(a+b-a)=2sin(a+b+a)
3sin(a+b)cosa-3cos(a+b)sina=2sin(a+b)cosa+2cos(a+b)sina
sin(a+b)cosa=5cos(a+b)sina
所以tan(a+b)=5*tana