设f(x),g(x)分别是定义在R上的奇函数和偶函数,当X0,且g(-3)=0.则不等式f(x)g(x)

问题描述:

设f(x),g(x)分别是定义在R上的奇函数和偶函数,当X0,且g(-3)=0.则不等式f(x)g(x)

设F(X)=f(x)g(x),则F(X)为奇函数,且F(-3)=F(3)=0.对F(X)=f(x)g(x)求导即f'(x)g(x)+f(x)g'(x).X0,所以F(X)在负无穷到0为增函数,又F(X)为奇函数,所以在0到正无穷也是增函数.再结合F(-3)=F(3)=0.(可以画个简单的奇函数...