设x,y,z是正实数,则(xy+2yz)/(x平方+y平方+z平方)的最大值为

问题描述:

设x,y,z是正实数,则(xy+2yz)/(x平方+y平方+z平方)的最大值为

这道题目就是拼凑,我算出来是 根号5 / 2
xy 2yz 所以为了消去(x平方+y平方+z平方)
只能是 a = 2*b 并且 1/2a + 1/b = b
求出b就是答案了。

x、y、z∈R+,由于xy+2yz ≤(x²+y²)/2+(y²+z²)=(x²+3y²+2z²)/2,那么
(xy+2yz)/(x²+y²+z²)≤(x²+3y²+2z²)/(2x²+2y²+2z²)
而当且仅当x=y=z时,上式取“=”(由于x=y=z时,xy+2yz取最大值,且x²+y²+z²≥2(xy+yz+zx)取得最小值,那么1/(x²+y²+z²)取得最大值,则(xy+2yz)/(x²+y²+z²)取得最大值);
则(xy+2yz)/(x²+y²+z²)的最大值为1.
...................................................

∵x²+y²+z²=[x²+(y²)/5]+[(4y²)/5+z²]≥2√5(xy)/5+2√5(2yz)/5=(2√5)(xy+2yz)/5
∴(xy+2yz)/(x²+y²+z²)≤5/(2√5)=√5/2
当且仅当 x=y/√5 2y/√5=z时等号成立
所以 (xy+2yz)/(x²+y²+z²)的最大值是√5/2