如图所示,一条小河的两岸l1∥l2,和两岸各有一座建筑A和B,为测得A,B间的距离,小明从点B出发,沿垂直河岸l2的方向上选一点C,然后沿垂直于BC的直线行进了24米到达D,测得∠CDA=90°,取CD的中点E,测得∠BEC=56°,∠AED=67°,求A,B间的距离.(参考数据:sin56°≈45tan56°≈32sin67°≈1415tan67°≈73262=676272=729)
问题描述:
如图所示,一条小河的两岸l1∥l2,和两岸各有一座建筑A和B,为测得A,B间的距离,小明从点B出发,沿垂直河岸l2的方向上选一点C,然后沿垂直于BC的直线行进了24米到达D,测得∠CDA=90°,取CD的中点E,测得∠BEC=56°,∠AED=67°,求A,B间的距离.(参考数据:sin56°≈
tan56°≈4 5
sin67°≈3 2
tan67°≈14 15
262=676272=729)7 3
答
知识点:本题考查的是解直角三角形的应用、锐角三角函数的定义、勾股定理及矩形的判定定理,在解答此题时要先根据锐角三角函数的定义求出AD及BC的长,再根据勾股定理得出结论.
∵点E是CD的中点,∴CE=DE=12CD=12×24=12(米),在Rt△BCE中,∵tan∠BEC=BCCE,∴BC=CE•tan56°≈12×32=18,在Rt△ADE中,tan∠AED=ADDE,∴AD=DE•tan67°≈12×73=28,易证四边形BCDF为矩形,故FD=BC,∴AF...
答案解析:先根据点E是CD的中点求出CE及DE的长,再根据锐角三角函数的定义求出BC及AD的长,由矩形的判定定理判定出四边形BCDF是矩形,求出AF的长,在Rt△ABF中,利用勾股定理即可得出AB的长.
考试点:解直角三角形的应用.
知识点:本题考查的是解直角三角形的应用、锐角三角函数的定义、勾股定理及矩形的判定定理,在解答此题时要先根据锐角三角函数的定义求出AD及BC的长,再根据勾股定理得出结论.