极坐标方程p=2sin(π/3+θ)化为直角坐标方程为A.(x-√3/2)∧2+(y-1/2)∧2=1.B,y∧2=2(x-√3/2) C,(x-√3/2)∧2(y-1/2)∧2=1.D,x∧2/(√3/2)∧2+y∧2/(1/2)∧2=1
问题描述:
极坐标方程p=2sin(π/3+θ)化为直角坐标方程为
A.(x-√3/2)∧2+(y-1/2)∧2=1.B,y∧2=2(x-√3/2) C,(x-√3/2)∧2(y-1/2)∧2=1.D,x∧2/(√3/2)∧2+y∧2/(1/2)∧2=1
答
p=2sin(π/3+θ) = 2sin(π/3)cosθ + 2cos(π/3)sinθ = √3cosθ + sinθp² = √3pcosθ + psinθx² + y² = √3x + y(x - √3/2)² + (y - 1/2)² = 1