下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有( )A. 2个B. 3个C. 4个D. 5个
问题描述:
下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有( )
A. 2个
B. 3个
C. 4个
D. 5个
答
①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;
②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;
③斜斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;
④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;
⑤一锐角和一边对应相等的两个直角三角形,可以由“直角三角形两个锐角互余”的性质推知另一锐角对应相等,所以根据AAS,或ASA都可判定它们全等.故⑤正确.
综上所述,正确的说法有4个.
故选C.
答案解析:根据全等三角形的判定定理HL、AAS、SSS等作出判定即可.
考试点:直角三角形全等的判定.
知识点:本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.