已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a、b为常数,求方程f(ax+b)=0的解集.

问题描述:

已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a、b为常数,求方程f(ax+b)=0的解集.

由题意知f(bx)=b2x2+2bx+a=9x2-6x+2
∴a=2,b=-3.
∴f(2x-3)=4x2-8x+5=0,
∵△<0,
∴方程f(ax+b)=0解集为∅.
答案解析:先通过f(x)的解析式求出f(bx),建立等量关系,利用对应相等求出a,b,最后解一个一元二次方程即得.
考试点:函数解析式的求解及常用方法;函数的零点.
知识点:本题考查了函数与方程的综合运用,函数思想和方程思想密切相关,相辅相成,为解决数学综合问题提供了思路和方法.