已知X1,X2是方程2x的平方+3x-4=0的两个实数根x1的平方+x2的平方似乎有两种答案,但是参考答案给的是25/4说错了,求的是x1的平方+x2

问题描述:

已知X1,X2是方程2x的平方+3x-4=0的两个实数根x1的平方+x2的平方
似乎有两种答案,但是参考答案给的是25/4
说错了,求的是x1的平方+x2

不对吧 如果求的是 x1的平方+x2的平方 是可以得出 25/4 的
过程如下:
2x²+3x-4=0
根据韦达定理可知:
x1+x2=-b/a=-3/2
( x1的平方)乘(x2的平方)=c/a=-2
∴ (x1+x2)²=x1的平方+2( x1的平方)乘(x2的平方)+x2的平方=9/4
∴ x1的平方+x2的平方=9/4+4=25/4
估计 这题 就考察 你们的 韦达定理

X1,X2是方程2x的平方+3x-4=0的两个实数根
x1+x2=-3/2
x1x2=-2
x1^2+2x1x2+x^2=9/4
x1^2-2x1x2+x^2=9/4-4x1x2
(x1-x2)^2=41/4
x1-x2=√41/2或x1-x2=-√41/2
(1)当x1-x2=√41/2
x1=(√41/2-3/2)/2=(√41-3)/4
x2=-3/2-(√41-3)/4=-(√41+3)/4
x1^2+x2=((√41-3)/4)^2-(√41+3)/4=(41-2√41+3)/16-(√41+3)/4
=(22-√41)/8-(√41+3)/4=(16-3√41)/8=2-3√41/8
(2)当x1-x2=-√41/2
x1=(-√41/2-3/2)/2=(-√41-3)/4
x2=-3/2-(-√41-3)/4=(√41-3)/4
x1^2+x2=((-√41-3)/4)^2+(√41-3)/4=(41+2√41+3)/16+(√41-3)/4
=(22+√41)/8+(√41-3)/4=(16+3√41)/8=2+3√41/8