已知函数f(x)=2^x-1/[2^(绝对值x)]1)若f(x)=2,求x的值;(2)若2^t*f(2t)+mf(t)≥0对于t∈【1,2】恒成立,求实数m的取值范围.
问题描述:
已知函数f(x)=2^x-1/[2^(绝对值x)]
1)若f(x)=2,求x的值;
(2)若2^t*f(2t)+mf(t)≥0对于t∈【1,2】恒成立,求实数m的取值范围.
答
若xf(x)=2,则x>0,
2^x-1/2^x=2
(2^x)^2-2*2^x-1=0
2^x=1+√2或2^x=1-√2
又x>0使得2^x>1,所以2^x=1+√2
x=log(2)(1+√2)
2^t(2^(2t)-1/2^(2t))+m(2^t-1/2^t)≥0
(2^t)^4+m*(2^t)^2-m-1≥0
(2^2t)^2+m*(2^2t)-m-1≥0
t∈[1,2],2^2t∈[4,16]
g(x)=x^2+mx-m-1=0
(x+m+1)(x-1)=0
则-m-1-5
答
若x0,2^x-1/2^x=2(2^x)^2-2*2^x-1=02^x=1+√2或2^x=1-√2又x>0使得2^x>1,所以2^x=1+√2x=log(2)(1+√2)2^t(2^(2t)-1/2^(2t))+m(2^t-1/2^t)≥0(2^t)^4+m*(2^t)^2-m-1≥0(2^2t)^2+m*(2^2t)-m-1≥0t∈[1,2],2^2t∈[4,16...