用反证法证明:设p,q为奇数,方程X的平方+2pq+2q无有理数解用反证法证明:设p,q为奇数,方程X的平方+2pq+2q无有理数解对不起,错了,是方程X的平方+2px+2q
问题描述:
用反证法证明:设p,q为奇数,方程X的平方+2pq+2q无有理数解
用反证法证明:设p,q为奇数,方程X的平方+2pq+2q无有理数解
对不起,错了,是方程X的平方+2px+2q
答
题目有问题,你再看一下,还有奇数不知道有没有包括负数啊
假设设m/n是该方程的有理根,m与n互质
则有m^2/n^2+2pm/n+2q=0
所以m^2+2pmn+2qn^2=0
因为2pmn+2qn2是偶数,所以m^2是偶数,所以m也是偶数
于是设m=2k
得到4k^2+4pkn+2qn^2=0
又有2k^2+2pkn+qn^2=0
因为2k^2+2pkn是偶数,所以qn^2是偶数
又q是奇数,所以n^2是偶数,所以n是偶数
得到m、n都是偶数,与m、n互质矛盾。得证!!
答
倘若不然,设m/n是该方程的有理根,(m、n互素)则m^2/n^2+2pm/n+2q=0=>m^2+2pmn+2qn^2=0因为2pmn+2qn2是偶数,所以m^2是偶数,所以m是偶数设m=2k=>4k^2+4pkn+2qn^2=0=>2k^2+2pkn+qn^2=0因为2k^2+2pkn是偶数,所以qn^2是偶...