已知复数Z满足|Z|=1,且Z≠±i,求证:(z+i)/(z-i)是纯虚数
已知复数Z满足|Z|=1,且Z≠±i,求证:(z+i)/(z-i)是纯虚数
这里用Z_表示Z的共轭,令W=(Z+i)/(Z-i),W_=(Z_-i)/(Z_+i),W+W_=[(Z+i)*(Z_+i)+(Z_-i)*(Z-i)]/[(Z-i)*(Z_+i)]=[Z*Z_+(Z+Z_)*i-1+Z*Z_-(Z+Z_)*i-1]/[(Z-i)*(Z_+i)]=(2*|Z|^2-2)/[(Z-i)*(Z_+i)]=0,所以W是纯虚数.
|z|=1,则可设z=cosθ+isinθ
(z+i)/(z-i)
=[cosθ+i(sinθ+1)]/[cosθ+i(sinθ-1)]
=[cosθ+i(sinθ+1)][cosθ-i(sinθ-1)]/[cosθ+i(sinθ-1)][cosθ-i(sinθ-1)]
=[cos²θ++2icosθ+(sinθ+1)(sinθ-1)]/(sin²θ+cos²θ)
=(sin²θ+cos²θ-1+2icosθ)
=2icosθ
(z+i)/(z-i)是纯虚数
设z=a+bi a+(b+1)i/a+(b-1)i=a方+b方-1+2ai/a方+b方-2b+1=2ai/2-2b=ai/1-b 所以纯虚数
设z=sin(x)+i*cos(x)带入计算即得结果
(z+i)/(z-i)取bar
bar(z+i)/(z-i)
=(bar z-i)/(bar z+i) (因为|Z|=1,所以z*bar z=1)
= (1/z-i)/(1/z+i)
=(1-iz)/(1+iz)
=(i+z)/(i-z)
=-(z+i)/(z-i)
一个数A取bar等于-A 当且仅当它是纯虚数
所以(z+i)/(z-i)是纯虚数
还没学过呢