如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是1cm2,则它移动的距离AA′等于______cm.

问题描述:

如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积是1cm2,则它移动的距离AA′等于______cm.

设CD与A′C′交于点H,AC与A′B′交于点G,
由平移的性质知,A′B′与CD平行且相等,∠ACB′=45°,∠DHA′=∠DA′H=45°,
∴△DA′H是等腰直角三角形,A′D=DH,四边形A′GCH是平行四边形,
∵SA′GCH=HC•B′C=(CD-DH)•DH=1,
∴DH=A′D=1,
∴AA′=AD-A′D=1.
故答案为1.
答案解析:本题考查了等腰直角三角形的判定和性质及平移的基本性质.
考试点:正方形的性质;等腰直角三角形;平移的性质.
知识点:本题需要运用等腰直角三角形的判定和性质及平移的基本性质结合求解.注意平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.