已知函数f(x)=2/x+αlnx,a∈R,求函数f(x)在区间(0,e]上的最小值
问题描述:
已知函数f(x)=2/x+αlnx,a∈R,求函数f(x)在区间(0,e]上的最小值
答
解,f'(x)=-2/x²+a/x=(ax-2)/x²当a≤0时,f'(x)0时,f(x)在(0,2/a]上为减函数,在(2/a,+∞)上为增函数若2/a≥e,即a≦2/e时,f(x)在(0,e]上为减函数,故f(x)最小值为f(e)=2/e+a若02/e时,f(x)最小值为f(2/a)=2+...