如图,已知直线y=12x+b经过点A(4,3),与y轴交于点B.(1)求B点坐标;(2)若点C是x轴上一动点,当AC+BC的值最小时,求C点坐标.

问题描述:

如图,已知直线y=

1
2
x+b经过点A(4,3),与y轴交于点B.
(1)求B点坐标;
(2)若点C是x轴上一动点,当AC+BC的值最小时,求C点坐标.

(1)由点A (4,3)在直线y=

1
2
x+b上,得
3=
1
2
×4+b
b=1.
∴B(0,1).…(1分)
(2)如图,作点A (4,3)关于x轴的对称点A′(4,-3),
连接BA′交x轴于点C,则此时AC+BC取得最小值.…(2分)
设直线BA′的解析式为y=kx+1,依题意
-3=4k+1.
k=-1.
∴直线BA′的解析式为y=-x+1.…(3分)
令y=0,则x=1.
∴C(1,0).…(4分)
答案解析:(1)将点A (4,3)代入直线y=
1
2
x+b即可求得B点的坐标;
(2)作点A (4,3)关于x轴的对称点A′(4,-3),连接BA′交x轴于点C,则此时AC+BC取得最小值.然后利用待定系数法求得直线BA′的解析式,然后将y=0代入求得的直线的解析式即可求得点C的坐标.
考试点:一次函数综合题.

知识点:本题考查了一次函数的综合知识,特别是在求到某两点的距离和最短问题,更是一个常见考题.