如图,在三角形ABC中,BM、CN平分角ABC、角ACB的外角,AM垂直BM于M,AN垂直CN于N求证:MN=1/2(AB+AC+BC)

问题描述:

如图,在三角形ABC中,BM、CN平分角ABC、角ACB的外角,AM垂直BM于M,AN垂直CN于N求证:MN=1/2(AB+AC+BC)

证明:延长AM交CB延长线于E,延长AN交BC延长线于F∵BM平分∠ABE,BM⊥AM∴AM=EM,AB=BE∴AM=AE/2∵CN平分∠ACF,CN⊥AN∴AN=FN,AC=CF∴AN=AF/2∴MN∥EF∴MN/EF=AM/AE∴MN=EF/2∵EF=BE+BC+CF∴EF=AB+BC+AC∴MN...