如图所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,EF⊥AB,垂足为F,且AB=DE.(1)求证:△BCD是等腰直角三角形;(2)若BD=8厘米,求AC的长.
问题描述:
如图所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,EF⊥AB,垂足为F,且AB=DE.
(1)求证:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的长.
答
(1)证明:如图所示,
∵BD⊥BC,EF⊥AB,
∴∠1+∠2=90°,∠1+∠3=90°,
∴∠2=∠3.
∵AC⊥BC,DB⊥BC,
∴AC∥BD.
∴∠A=∠2.
∴∠A=∠3.
∴又∠ACB=∠EBD=90°,AB=DE,
∴△ACB≌△EBD.
∴BC=DB.
∴△BCD是等腰直角三角形.
(2)由△ACB≌△EBD,
∴AC=EB,
∵BD=8cm,
∴BC=8cm.
∵E是BC中点,
∴BE=4cm,
∴AC=4(cm).
答案解析:(1)要证△BCD是等腰直角三角形,只需证BC=DB,由已知BD⊥BC,EF⊥AB,可证∠2=∠3,由已知AC⊥BC,DB⊥BC,可证AC∥BD,得∠A=∠2,即可证得∠A=∠3,又已知∠ACB=∠EBD=90°,AB=DE,符合三角形全等的判定定理AAS,即可证得△ACB≌△EBD,所以BC=DB,即证△BCD是等腰直角三角形.
(2)由(1)知△ACB≌△EBD,得到AC=EB,又因为BD=8cm,即BC=8cm.又因为E是BC中点,故BE=4,即可求AC=4cm.
考试点:全等三角形的判定与性质.
知识点:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.