已知实数a>0,函数f(x)=ax(x-2)2(x∈R)有极大值32.(1)求实数a的值;(2)求函数f(x)的单调区间.

问题描述:

已知实数a>0,函数f(x)=ax(x-2)2(x∈R)有极大值32.
(1)求实数a的值;
(2)求函数f(x)的单调区间.

(1)∵f(x)=ax(x-2)2=ax3-4ax2+4ax,
∴f′(x)=3ax2-8ax+4a.
由f′(x)=0,得3ax2-8ax+4a=0.
∵a≠0,∴3x2-8x+4=0.
解得x=2或x=

2
3

∵a>0,∴x<
2
3
或x>2时,f′(x)>0;
2
3
<x<2时,f′(x)<0.
∴当x=
2
3
时,f(x)有极大值32,即
8
27
a-
16
9
a+a=32,∴a=27.
(2)∵x<
2
3
或x>2时,f′(x)>0,∴函数f(x)单调递增
2
3
<x<2时,f′(x)<0,∴函数f(x)单调递减
f(x)在(-∞,
2
3
)和(2,+∞)上是增函数,在(
2
3
,2)上是减函数.
答案解析:(1)先将函数f(x)展开,然后对函数f(x)进行求导,令导函数等于0求x的值,再由函数的单调性进行验证从而最终确定答案.
(2)根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减可求单调区间.
考试点:利用导数研究函数的极值;利用导数研究函数的单调性.
知识点:本题主要考查函数的极值、单调性与其导函数之间的关系.属基础题.