已知正数x、y满足xy-x-y=1,求x+y的最小值
问题描述:
已知正数x、y满足xy-x-y=1,求x+y的最小值
答
解:∵xy-x-y=1,∴x(y-1)-y+1=1+1∴(y-1)(x-1)=2.
先证明:x>1,如果:0<x≤1,则1-x≥0且1-y与1-x同号则0≤1-x<1
∴0≤(1-y)<1∴0≤(1-y)(1-x)<1
又∵(1-x)(1-y)=2矛盾,∴x>1,∴y>1
∴x>1且y>1
∵x+y=2+(x-1)+(y-1)≥2+2√(x-1)(y-1)=2+2√2
∴x+y的最小值是2+2√2.
(y-1)(x-1)=2.当x-1=y-1=√2时,即x=y=√2+1,所以x+y的最小值是2+2√2.
答
解法一用函数的思想xy-x-y=1得y=(x+1)/(x-1)x+y=x+(x+1)/(x-1)=(x-1)+2/(x-1)+2因为x,y>0最小值取到时(x-1)=2/(x-1)既x=(√2)-1 x+y=2√2+2解法二xy+1=x+y≥2√xy(√xy-1-√2)(√xy-1+√2)≥0因为)√xy-1+√...