已知非负数a,b,c满足条件a+b=7,c-a=5,设S=a+b+c的最大值为m,最小值为n,则m-n的值为______.

问题描述:

已知非负数a,b,c满足条件a+b=7,c-a=5,设S=a+b+c的最大值为m,最小值为n,则m-n的值为______.

∵a,b,c为非负数;∴S=a+b+c≥0;又∵c-a=5;∴c=a+5;∴c≥5;∵a+b=7;∴S=a+b+c=7+c;又∵c≥5;∴c=5时S最小,即S最小=12;∴n=12;∵a+b=7;∴a≤7;∴S=a+b+c=7+c=7+a+5=12+a;∴a=7时S最大,即S最大=19;∴...
答案解析:由于已知a,b,c为非负数,所以m、n一定≥0;根据a+b=7和c-a=5推出c的最小值与a的最大值;然后再根据a+b=7和c-a=5把S=a+b+c转化为只含a或c的代数式,从而确定其最大值与最小值.
考试点:不等式的性质.
知识点:不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.