已知f(x)= √3sinx+cosx (1)求f(x)最小正周期及最大值 (2)若f(α)=2/3,求cos(2α+π/3)的值
已知f(x)= √3sinx+cosx (1)求f(x)最小正周期及最大值 (2)若f(α)=2/3,求cos(2α+π/3)的值
(1) f(x)=√3sinx+cosx.
f(x)=2(√3/2sinx+1/2cosx).
=2sin(x+π/6).
f(x)的最小正周期T=2π.
f(x)的最大值f(x)max=2*1=2 sin(x+π/6)=1.
(2).cos(2α+π/3)=cos(α+π/6+α+π/6).
=cos(α+π/6)*os(α+π/6)-sin(α+π/6)sin(α+π/6).
=[cos(α+π/6)]^2-[sin(α+π/6)]^2.
又知:f(α)=2/3,
则,2sin(α+π/6)=2/3.
sin(α+π/6=1/3.
cos(α+π/6)=√[1-sin^2(α+π/6)]=2√2/3.
∴ cos(2α+π/3)=(2√2/3)^2-(1/3)^2.
=8/9-1/9.
=7/9.
f(x)=2sin(x+π/6)→T=2π,最大值为2
2sin(α+π/6)=2/3→sin(α+π/6)=1/3→cos²(α+π/6)=8/9→cos(2α+π/3)=2cos²(α+π/6)-1=7/9
f(x)= √3sinx+cosx
=2[(√3/2)sinx+(1/2)cosx]
=2sin(x+π/6)
(1) 最小正周期T=2π/1=2π
∵sin(x+π/6)≤1
∴f(x)最大值=2
(2) f(α)=2sin(α+π/6)=2/3
sin(α+π/6)=1/3
cos(2α+π/3)=cos[2(α+π/6)]
=1-2[sin(α+π/6)]^2
=1-2*(1/3)^2
=1-2/9
=7/9
﹙1﹚.∵f﹙x﹚= √3sinx+cosx
=2sin﹙x+π/6﹚
∴T=2π,f﹙x﹚max=2
﹙2﹚.∵f﹙α﹚=√3sinα+cosα=2/3
又∵sin²α+cos²α=1
∴ 解得,sinα=﹙√3-2√2﹚/6,cosα=﹙1+2√6﹚/6
∴cos﹙2α+π/3﹚=cos2αcosπ/3-sin2αsinπ/3
=½﹙cos²α-sin²α﹚-√3sinαcosα
=7/9
ps因为α没有给范围,所以不能由sin求cos ,虽然直接求答案也是一样的,但过程实际上是不严谨的。