求证:C0n+2C1n+3C2n+…+(n+1)Cnn=2n+n•2n-1.
问题描述:
求证:
+
C
0
n
+3
2C
1
n
+…+(n+1
C
2
n
=2n+n•2n-1.
)C
n
n
答
证明:记S=
+
C
0
n
+3
2C
1
n
+…+(n+1
C
2
n
,
)C
n
n
倒序则S=(n+1)Cnn+nCnn-1+…+
,
C
0
n
∴2S=(n+2)cn0+(n+2)Cn1+…+(n+2)Cnn=(n+2)•2n
∴S=2n+n•2n-1.
答案解析:直接采用倒序相加法再结合组合数的性质即可证明结论;
考试点:二项式系数的性质.
知识点:本题考查倒序相加求和及二项式系数的性质,属于中档题.