求证:C0n+2C1n+3C2n+…+(n+1)Cnn=2n+n•2n-1.

问题描述:

求证:

C 0n
+
2C 1n
+3
C 2n
+…+(n+1
)C nn
=2n+n•2n-1

证明:记S=

C 0n
+
2C 1n
+3
C 2n
+…+(n+1
)C nn

       倒序则S=(n+1)Cnn+nCnn-1+…+
C 0n

∴2S=(n+2)cn0+(n+2)Cn1+…+(n+2)Cnn=(n+2)•2n
∴S=2n+n•2n-1