设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM的最大值和最小值分别记为s和t,则s2-t2=______.

问题描述:

设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM的最大值和最小值分别记为s和t,则s2-t2=______.

如图,作M关于BC的对称点M′与A的连线AM′与BC交点时PA+PM取最小值t,当P与C重合时为最大值s=2+3,过A作AD⊥M′M交其延长线于D,易知M′D=3MH=332,又因为AD=12,所以PM+PA=PM′+PA=AM′=7(勾股定理),故s-t=2+3-7...
答案解析:先M关于BC的对称点M′与A的连线AM′与BC交点时PA+PM取最小值t,当P与C重合时为最大值s,再根据特殊角的三角函数值及勾股定理分别求出s、t的值即可.
考试点:轴对称-最短路线问题;等边三角形的性质;勾股定理.
知识点:本题考查的是最短路线问题,根据题意分别作出各点的对称点,即辅助线是解答此题的关键.