三个质数的乘积恰好等于它们的和的11倍,求这三个质数我需要解题的详细过程和思路

问题描述:

三个质数的乘积恰好等于它们的和的11倍,求这三个质数
我需要解题的详细过程和思路

3*7*11=11(3+7+11)

由题说明至少有一个是11的倍数因为是质数所以有一个数是11.设另外两个数是x,y且x>=y
xy=11+x+y
xy-x-y+1=12
(x-1)(y-1)=12
所以
x-1=6 y-1=2
x-1=4 y-1=3
x-1=12 y-1=1
所以解是
2,11,13或3,7,11

从原话中“11倍”可知,这3个数中必有11,得:
ab=a+b+11
数字比较小,枚举法即可很轻松的得出,
a、b是3和7
得这三个数是3、7、11

3,7,11
这三个质数的乘积恰好等于它们的和的11倍,说明这三个质数的乘积是11的倍数,所以,这三个质数中肯定有11
设另两个质数为X和Y,则有
11XY=11(11+X+Y)
XY=11+X+Y
可推测出XY分别是3和7.