设函数x,y满足(x-1)^2+y^2=1,则x+根号3y的最大值为

问题描述:

设函数x,y满足(x-1)^2+y^2=1,则x+根号3y的最大值为

(x-1)^2+y^2=1
设x-1=sint
y=cost
x+根号3y
=sint+√3cost
=2(1/2sint+√3/2cost)
=2(sintcos60°+costsin60°)
=2sin(t+60)
所以最大值为2