已知:定点A(3,0)和定圆c:(x+3)^2+y^2=4,动圆与圆c相外切,且过点A,求动圆圆心p的轨迹方程.详细点

问题描述:

已知:定点A(3,0)和定圆c:(x+3)^2+y^2=4,动圆与圆c相外切,且过点A,求动圆圆心p的轨迹方程.
详细点

设动圆方程为:X^2-2mx+y^2-2ny+k=0代入点A(3,0)得出:k=-9+6m整理方程:(x-m)^2+(y-n)^2=(m-3)^2+n^2圆心O:(m,n),R=√(m-3)^2+n^2定圆C:圆心C:(-3,0)r=2动圆与圆c相外切所以,CO=R+r√(m+3)^2+n^2=2+√(m-3...