f(x)是定义域在(-2,2)上单调递减的奇函数,当f(2-a)+f(2a-3)<0时,a的取值范围是(  )A. (0,4)B. (0,52)C. (12,52)D. (1,52)

问题描述:

f(x)是定义域在(-2,2)上单调递减的奇函数,当f(2-a)+f(2a-3)<0时,a的取值范围是(  )
A. (0,4)
B. (0,

5
2
)
C. (
1
2
5
2
)

D. (1,
5
2
)

∵f(2-a)+f(2a-3)<0,∴f(2-a)<-f(2a-3),∵f(x)是奇函数,
∴f(2-a)<f(-2a+3),∵f(x)是定义域在(-2,2)上单调递减函数,

2−a>−2a+3
−2a+3>−2
2−a<2

∴a∈2-a>-2a+3
故选D
答案解析:条件f(2-a)+f(2a-3)<0的等价转化为f(2-a)<-f(2a-3),进而化为f(2-a)<f(-2a+3),最后2-a>-2a+3.
考试点:函数单调性的性质;函数奇偶性的性质.
知识点:条件f(2-a)+d(2a-3)<0的等价转化是解决此题的关键.方法是想方设法脱去外衣f,最终转化为解关于a的不等式.
另外,解函数的问题不能忘记其定义域.