x/(x+1) + (x+2)/(x-2) = 8/(x²-4)

问题描述:

x/(x+1) + (x+2)/(x-2) = 8/(x²-4)

x/(x+1)+(x+2)/(x-2)-8/(x²-4)=0
x/(x+1)+[(x+2)(x+2)]/[(x-2)(x+2)]-8/(x²-4)=0
x/(x+1)+(x²+4x+4-8)/[(x-2)(x+2)]=0
x/(x+1)+(x²+4x-4)/[(x-2)(x+2)]=0
x/(x+1)+(x-2)²/[(x-2)(x+2)]=0
x/(x+1)+(x-2)/(x+2)=0
x²+2x+x²-x-2/[(x+1)(x+2)]=0
x²+2x+x²-x-2=0
2x²+x-2=0
x1=(-1+√17)/4 x2=(-1-√17)/4