等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则数列{an}的公比为( )A. 12B. 13C. 25D. 49
问题描述:
等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则数列{an}的公比为( )
A.
1 2
B.
1 3
C.
2 5
D.
4 9
答
设等比数列的首项为a1,公比为q,
则由S1,2S2,3S3成等差数列,得:
4S2=S1+3S3,
即4(a1+a1q)=a1+3(a1+a1q+a1q2),
整理得:3q2-q=0,解得q=0或q=
.1 3
∵q≠0,
∴q=
.1 3
故选:B.
答案解析:设出等比数列的首项和公比,结合S1,2S2,3S3成等差数列列式求解q的值.
考试点:等比数列的通项公式.
知识点:本题考查等比数列的通项公式,考查等差数列的性质,是基础题.