求数列前n项和:1/2,3/2的平方,5/2的立方,.(2n-1)/(2的n次方)

问题描述:

求数列前n项和:1/2,3/2的平方,5/2的立方,.(2n-1)/(2的n次方)

错位相减法.
Sn=1/2+3/2^2+5/2^3+.+(2n-1)/2^n ,
2Sn=1+3/2+5/2^2+.+(2n-1)/2^(n-1) ,
两式相减得 Sn=1+2*[1/2+1/2^2+...+1/2^(n-1)]-(2n-1)/2^n
=1+[1+1/2+1/2^2+.+1/2^(n-2)]-(2n-1)/2^n
=1+[1-(1/2)^(n-1)]/(1-1/2)-(2n-1)/2^n
=1+2-1/2^(n-2)-(2n-1)/2^n
=3-(2n+3)/2^n .