(1)已知一元二次方程x2+px+q=0(p2-4q≥0)的两根为x1、x2;求证:x1+x2=-p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.

问题描述:

(1)已知一元二次方程x2+px+q=0(p2-4q≥0)的两根为x1、x2;求证:x1+x2=-p,x1•x2=q.
(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.

证明:(1)∵a=1,b=p,c=q∴△=p2-4q∴x=-p±p2-4q2即x1=-p+p2-4q2,x2=-p-p2-4q2∴x1+x2=-p+p2-4q2+-p-p2-4q2=-p,x1•x2=-p+p2-4q2•-p-p2-4q2=q;(2)把(-1,-1)代入y=x2+px+q得1-p+q=-1,所以,q=p-2,设抛...
答案解析:(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;
(2)把点(-1,-1)代入抛物线的解析式,再由d=|x1-x2|可知d2=(x1-x22=(x1+x22-4 x1•x2=p2,再由(1)中 x1+x2=-p,x1•x2=q即可得出结论.
考试点:抛物线与x轴的交点;根与系数的关系.
知识点:本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q是解答此题的关键.