不等式证明:已知a^2 + b^2 = 1 ,x^2 + y^2 = 1 ,求证ax + by ≤1
问题描述:
不等式证明:已知a^2 + b^2 = 1 ,x^2 + y^2 = 1 ,求证ax + by ≤1
答
回答即可得2分,回答被采纳则获得悬赏分以及奖励20分(a^2 + b^2)*(x^2 + y^2 )=1*1>=(ax+by)^2
得
ax+by太简单的柯西不等式的应用了
答
(a^2 + b^2)*(x^2 + y^2 )=1*1>=(ax+by)^2
得
ax+by太简单的柯西不等式的应用了
答
设a=sinA,b=cosA x=sinB,y=cosB
则 ax+by=sinA*sinB+cosA*cosB
=cos(A-B)《1