sin(x/2) = 2/3 [0≤x≤pi/2] cosx?tanx?sin(x/4) sin(x/2) = 2/3 [0≤x≤pi/2] 怎样求:(要程序!1) cosx?tanx?sin(x/4)

问题描述:

sin(x/2) = 2/3 [0≤x≤pi/2] cosx?tanx?sin(x/4)
sin(x/2) = 2/3 [0≤x≤pi/2]
怎样求:(要程序!1)
cosx?tanx?sin(x/4)

应该有个二倍角公式吧

cosx=1-2sin^(x/2)=1/9
又:sinx=根号下(1-cos^x)=根号下80/9
所以:tanx=sinx/cosx=根号下80
又:cos(x/2)=根号下{1-sin^(x/2)}=根号下5/3
所以:sin(x/4) =根号下{[1-cos(x/2)]/2}=……
再解一下就可以了〉