如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.(提示:连接CE)
问题描述:
如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,求∠BDE的度数.(提示:连接CE)
答
连接CE,∵△ABC是等边三角形,∴AC=BC,在△BCE与△ACE中,AC=BCAE=BECE=CE,∴△BCE≌△ACE(SSS),∴∠BCE=∠ACE=30°∵BE平分∠DBC,∴∠DBE=∠CBE,在△BDE与△BCE中,BD=BC∠DBE=∠CBEBE=BE,∴△BDE≌...
答案解析:由已知条件先证明△BCE≌△ACE得到∠BCE=∠ACE=30°,再证明△BDE≌△BCE得到∠BDE=∠BCE=30°.
考试点:等边三角形的性质;全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定与性质及等边三角形的性质;熟练掌握等边三角形的性质,会运用全等求解角相等,正确作出辅助线是解答本题的关键.