已知矩形ABCD中,E,F,K分别是AB,CD,BC的中点,AK与EF交于点G若AK⊥BF,判断四边形ABCD的形状.

问题描述:

已知矩形ABCD中,E,F,K分别是AB,CD,BC的中点,AK与EF交于点G
若AK⊥BF,判断四边形ABCD的形状.

正方形.懒得画图了,自己画.思路:做辅助线AC、BD,设AK⊥BF于H.先证明三角形KAB与三角形BFE相似,再证明三角形FBD与KAC全等,推出DF=KC,即DC=BC