(x/1×2)+(x/2×3)+(x/3×4)+···+(x/2005×2006)=2005 解方程.

问题描述:

(x/1×2)+(x/2×3)+(x/3×4)+···+(x/2005×2006)=2005 解方程.

x/1x2=x(1-1/2)
x/2x3=x(1/2-1/3)
x/3x4=x(1/3-1/4)
.
.
.
.
x/2005x2006=x(1/2005-1/2006)
(x/1×2)+(x/2×3)+(x/3×4)+···+(x/2005×2006)
=x(1-1/2+1/2-1/3+1/3-1/4+.+1/2005-1/2006)
=x(1-1/2006)
=2005x/2006=2005
x=2006