在三角形中,∠A+∠C=2∠B,∠C-∠A=80°,求三角形ABC各内角的度数
问题描述:
在三角形中,∠A+∠C=2∠B,∠C-∠A=80°,求三角形ABC各内角的度数
答
a=20
b=60
c=100
答
∵∠A+∠C+∠B=180°,∠A+∠C=2∠B,
∴3∠B=180°
∴∠B=60°
又∵∠A+∠C=2∠B=120°,∠C-∠A=80°
∴∠C=100°,∠A=20°,∠B=60°
答
A+B+C=180
A+C=2B
3B=180
B=60
A+C=120
C-A=80
2C=200
C=100
A=20
哈哈 我太厉害了
答
因为∠A+∠C+∠B=180°,∠A+∠C=2∠B,
所以∠B=30°,∠A+∠C=150°
而∠C-∠A=80°
则∠C=115°,∠A=35°
答
因为∠A+∠B+∠C=180°,再结合上面∠A+∠C=2∠B可以推出3∠B=180°,则∠B=60°,又因为∠A+∠C=2∠B=120°,∠C-∠A=80°则算出∠C=100°,∠A=20°