设数列{an}的前n项和为Sn,已知Sn=2an-2n+1,(n为下标,n+1为上标),求通项公式?

问题描述:

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1,(n为下标,n+1为上标),求通项公式?

Sn=2an-2n+1
S(n-1)=2a(n-1)-2(n-1)+1
两式相互,即
an=2an-2a(n-1)+2
所以an=2a(n-1)+2
即an+2=2(a(n-1)+2)
所以{an+2}为等比数列,公比为2
S1=2a1-2+1=a1
所以a1=1,所以a1+2=3
所以an+2=3*2^(n-1)
所以an=3*2^(n-1)-2

Sn=(2an)-2n+1.【1】当n=1时,a1=S1=2a1-1.∴a1=1.【2】 S(n-1)=Sn-an=(an)-2n+1.又S(n-1)=2a(n-1)-2(n-1)+1,∴(an)-2n+1=2a(n-1)-2n+3.===>an=2a(n-1)+2.===>(an)+2=2[a(n-1)+2].∴数列{(an)+2}是首项为3,公比为2的等比数列。∴(an)+2=3×2^(n-1).∴通项an=3×2^(n-1)-2.

当n=1时,S1=a1,a1=2a1-4,a1=4,
Sn=2an-2^(n+1)
S(n-1)=2a(n-1)-2^n
Sn-S(n-1)=an=2an-2a(n-1)-2^n
an=2a(n-1)+2^n
=2[2a(n-2)+2^(n-1)]+2^n=2^2a(n-2)+2*2^n
=2^2[2a(n-3)+2^(n-2)]+2*2^n=2^3a(n-3)+3*2^n
=.........
=2^(n-1)a1+(n-1)*2^n
=2^(n-1)*4+(n-1)*2^n
=2*2^n+(n-1)*2^n
=(n+1)*2^n

Sn=2an-2n+1,Sn-1=2an-1-2(n-1)+1
Sn-Sn-1=an=2an-2n+1-2an-1+2(n-1)-1
an=2an-1+2 an+2=2(an-1+2) an+2是以2为公比,a1+2=3为首项的等比数列
an+2=3*2^[n-1] an= 3*2^[n-1]-2

Sn=2an-2n+1,得,a1=2a1-2^2,得a1=4
Sn=2an-2^(n+1),得Sn+1=2an+1-2^(n+2)
两式相减,得
an+1=2an+1-2an-2^(n+1)
an+1=2an+2^(n+1)
两边队以2^(n+1),得
an+1/2^(n+1)=an/2^n+1
an/2^n=a1/2+(n-1)=n+1
所以,an=(n+1)2^n