求lim(n->0){(sin(n/2))/n},
问题描述:
求lim(n->0){(sin(n/2))/n},
答
其实严格意义上说 ,应该转化成函数的形式 ,再用洛必达法则。
答
lim(n->0){(sin(n/2))/n}
=lim(n->0){((n/2))/n}
=1/2
答
用洛必达法则,上下求导
lim(n->0){(sin(n/2))/n}
=lim(n->0){(1/2)cos(n/2))/1}
=1/2