已知F1,F2分别为双曲线C:x^2/9-y^2/27=1的左右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线AF1-AF2=2a=2*3=6您怎么知道a=3

问题描述:

已知F1,F2分别为双曲线C:x^2/9-y^2/27=1的左右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线
AF1-AF2=2a=2*3=6
您怎么知道a=3

题目中设定的双曲线方程可知a^2=9,所以a=3

双曲线x²/a²-y²/b²=1
这里a²=9

x^2/9-y^2/27=1
y=0时,x^2/9=1
x不可能为0
因此,左右焦点在x轴上,因此a^2=9,a=3
同理
y^2/9-x^2/27=1
x=0时,y^2/9=1
y不可为0
因此,焦点在y轴上,因此a^2=9,a=3
双曲线的特点
与对称轴的交点即顶点坐标(a,0)(-a,0)或(0,a)(0,-a)